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Abstract:The transmission dynamics mathematical model of infectious disease is an essential disease 

controlling technique, which is being used on the occurrence of HBV to value the varying immunization 

strategies. In this paper, we analyze the transmission dynamics models through mathematical modeling using 

Homotopy perturbation method (HPM) which defines how to control the impact of HBV. To get the solution for 

nonlinear ordinary differential equations,Homotopy Perturbation Method (HPM) has been used. Here, we have 

discussed the numerical simulations up to six order approximation and error analysis with the help of Matlab 

software. SIDBRA model has been considered as the best modal to control the viral infections. Thus, examining 

the dynamics of Hepatitis B viral infection is mainly focused and also shows how given antibiotic (vaccination) 

control the disease. 

Keywords: Mathematical modeling, HPM, HBV, Dynamics, Transmission. 

 

I. Introduction 

Infection by Hepatics B virus is a threatening disease which may or may not show any symptoms to 

identify [1,3].  According to the statistical survey, it has been reported that more than 350 million people 

globally carriers Hepatitis B and die 0.6 million per year [1]. To protect and prohibit from this disease, timing 

vaccination is the possible solution to control the disease [6,13]. Particularly this has been proved by different 

research works.Mathematical modeling was a tool to be used for describing the complex process of HBV 

transmission. Differential equation models have been used in many of the published research studies [1]. 

Ordinary differential equation has been mainly used for mathematical expression compared to partial differential 

equation when the transmission dynamics of Hepatitis B modeling is done [1, 2].Age itself is the reasons for 

curing the populations of infectious diseases. If the person is at the young age, it is very easy to control [36].  

Keeping the age as base, mathematical modelswas developed for studying the transmission dynamics of 

Hepatitis B. Zhao et al developed the following partial differential equation model with age structure [18]: 
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rate of successful vaccination, natural mortality rate is μ, age dependent mortality isμc and the recovery rate is δ 

are assumed as constant.  

 

The transmission dynamics model is recognized as compartmental model by which thevariation of HBV can be 

studied theoretically [1].   It is based on the characteristics of population and disease, dynamic behavior of 

disease using mathematical modeling.Zou, Zhang and Ruan proposed that how to control HBV using modeling 

the transmission dynamics [19, 20].  McLean and Blimberg first offered a HBV transmission differential 

equation model [16].  The impact of different antibiotic methods on the HBV is different.  The antibiotic 

methods played a dominant role in newborns in subsidizing the effect of HBVfrequency, and immunization of 

sensitive adults or dangerous population have a reasonable effect on controlling HBV infection [21].  Therefore, 

the age and time are the most important factors to cure HBV infection. 

Mathematical models have been one of the very much useful methods for the understanding virus and dynamics 

under treatment in infections such as HBV [22, 23].Sensitive S(t) denoted the population at precarious of 

infection with HBV; Idle I(t) denoted the population infected but not yet infectious; Dangerous D(t) denoted the 

population at early high infectious stage of HBV; Bearer B(t) denoted the population with continuing HBV 

infection who are infectious or non-infectious to others; Reacquire R(t) denoted the recovered population for the 

lifetime; Antibiotic A(t) denoted the immunity that monitors vaccination may disappear over time. 

 

 

 

 

 

 

 

 

Figure 1: Compartmental diagram for the HBV. 

Peifeng Liang et al [1] developed the following transmission dynamics models using six ordinary differential 

equations.  Here they introduced one extra compartment which is vaccination (Antibiotic).The model becomes 
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The initial and boundary conditions are: 
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S(0) =1×10
-1

; I(0) = 1×10
-2

; D(0) =1×10
-3

; B(0) = 1×10
-4

; R(0) = 1×10
-5

; A(0) = 1×10
-6

. 

TABLE 1. Parameter values used in numerical simulations 

Parameter Explanation Range 

μ Natural mortality rate 0.055 – 0.016 

λ Force of HBV infection 0.013 – 0.159 

v Rate of individuals leave the idle class 6 – 8 per year 

β Coefficient of transmission 0.8 – 20.49 

ω The birth proportion with successful vaccination 0.055 – 0.095 

σ proportion of perinatal infection 0.7 – 0.9 

δ The recovery rate of bearer 0.0005 – 0.03 

b Birth rate 0.0121 – 0.05 

ϕ Rate of waning vaccine-induced immunity 0.001 – 0.039 

γ Rate of individuals leave the dangerous class 3 – 4 per year 

ρ Probability of individual suffering from dangerous HBV 

infection to become a chronic bearer. 

0.05 – 0.09 

 

II. Homotopy Perturbation Method 

To explain the primary concept of HPM, we take the non-linear functional equation as follows 

   – 0 ,  ,P x g a a           (2.1) 

The boundary conditions are; 

, 0
x

Q x
n

 
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 
, a ,        (2.2) 

Here P is an arbitrary functional operator, Q is a boundary operator, g(a) is ananalytic function  and  is the 

boundary of the domain .  Generally, the operator P can be divided into two parts TL and TN, where TL is a 

linear and TN is a non-linear operator. Therefore Eq (2.1) can be rewritten as follows; 

     – 0L NT u T u g a  .        (2.3) 

We construct a homotopy    , : 0,1h a p R   which satisfies 

           0, 1 – – 0,L LM h p p T h T x p P h g a              (2.4) 

Or 

           0 0, –   – 0,L L L NM h p T h T x p T x p T h g a         (2.5) 

Where  0,1p is an embedding parameter, and 0x is an initial approximation for the solution of Eq. (2.1), 

which satisfies the boundary conditions.By using HPM, let us use p, and take the solution of Eq. (2.5) should be 

written as a power series in p: 
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Let us consider p =1, the approximate solution of Eq. (2.2) should be established as follows; 
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2.1 Convergence of the method 

Let’s rewrite the Eq. (2.5) as the following; 
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By usingMaclaurin expansion of  0

i

N ii
T h p



 with respect to p, we get; 

0 0 0 0

1

!

n
i i i

N i N in
i n i p

T h p T h p p
n p

  

   

    
     

    
        

 (2.11) 

0 00 0

n n
i i

N i N in n
i ip p

T h p T h p
p p

 

  

       
      

       
       

 (2.12) 

0 0 0 0

1

!

n
i i i

N i N in
i n i p

T h p T h p p
n p

  

   

    
     

    
        

 (2.13) 

We assume, 

0 1 2

0 0

1
( , , ,..., ) , 0,1,2,...,

!

n
i

n n N in
i p

M h h h h T h p n
n p



 

   
   

   
    

 (2.14) 

 



Transmission Dynamics Model Analysis of HBVusing HomotopyPerturbation Method 

Department of Computer Science and Computer Application                                                                    32 | Page 

Apollo Arts and Science College, Chennai Guduvanchery. 

Here Mns are the so-called He’s polynomials (2.11 – 2.13).  Then, 
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Substituting (2.15) into (2.10), we can derive; 
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By equating the terms with the identical powers in p: 
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Theorem2.1.The solution of Eq. (2.1) is equivalent to defining the following using Homotopy perturbation 

method; 
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Here 
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Then, from (2.19), it can be written as; 
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Which is the result of (2.18) from HPM, and hence the theorem is proved. 



Transmission Dynamics Model Analysis of HBVusing HomotopyPerturbation Method 

Department of Computer Science and Computer Application                                                                    34 | Page 

Apollo Arts and Science College, Chennai Guduvanchery. 

Theorem 2.2.Let Ƀ be a Banach space. 
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But by Eqs. (2.21) and (2.15) for p=1, we drive; 
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solution of Eq. (2.29) is the same as solution of     0P x g a  . 

III. Applications 

The analytical solution of the model (1.2) using the HPM is 

4
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Here A2 = 5.91×10
-6

, A3 = 1×10
-9

, A4 = 6×10
-3 

1 6.018 5 0.8 9 0.006( ) 1 10 0.09997 2.955 10 1 10t t t tS t e e e e             
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Here α1 = 1.3×10-3, α2 = 6.018 

2 6.005 2 6.018( ) 2 10 1 10t tI t e e         
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Ψ = 3.47×10
-7 
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 ξ = 9.5×10
-4

, κ = -6.29×10
-7 
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 φ = -35.29 

0.006 6.018( ) 0.45833 34.832 35.29t tA t e e      

IV. Numerical results 

Let us consider the values for numerical results are, 

S0 =1×10
-1

; I0 = 1×10
-2

; D0 =1×10
-3

; B0 = 1×10
-4

; R0 = 1×10
-5

; A0 = 1×10
-6

. 

μ= 0.005,  λ = 0.013,    v = 6, β = 0.8,     ω = 0.055,    σ = 0.7,   δ = 0.005,     b = 0.05,   ϕ =0.001, γ=3, ρ = 0.05 

Let us use MatLab software to obtain the sixth-order expansions for S(t), I(t), D(t), B(t), R(t) and A(t): 
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    (4.2) 
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      (4.4) 

R(t) = 0.00001+ 0.00000545ht + 0.000005853h
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        (4.5) 

A(t) = 0.000001+ 0.0000003551ht + 0.000000466h
2
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   (4.6) 

V. Discussion 

The spread of HBV is very difficult procedure. It is controlled and subjective by many relating aspects. 

We have examined the sensitive, idle, dangerous,bearer, reacquire and antibiotic individuals, and also 

individuals who are carrying the diseases before treatment and after treatment are shown through parameter 

values.  Figure 2 shows that, when the force of infection increases, the sensitive population got decreased 

therefore HBV also would get increased.  When the mortality rate and transmission coefficients are increased 

then the sensitive populations are decreased. This can be shown in figures 3, 4 and 5.  These are only depended 

age and time. 

 

FIGURE 2The changes in sensitive populations force 

of HBV infection 

FIGURE 3 The changes in sensitive populations of v 

 

  

FIGURE 4 The changes in sensitive populations of the 

mortality rate 

 

FIGURE 5 The changes in sensitive populations of 

transmission coefficient 
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FIGURE 6 The changes in idle populations of natural 

mortality 

FIGURE 7The changes in idle populations of 

individual leave the idle class 

  

 

The idle population is decreased when the natural mortality rate and the rate of individuals leave from idle class 

are increased.  This can be shown in figures 7 and 8.  The infectious condition of dangerous class will be 

decreased when the natural mortality and v values are increased.  This can be shown in figures 9 and 10.  Finally 

the individuals leave from the dangerous class which is shown in figure 11. 

FIGURE 8 The changes in dangerous populations of 

natural mortality rate 

 

FIGURE 9 The changes in dangerous populations of 

individual leave the idle class 

  

FIGURE 10 The changes of populations leave the 

dangerous class 

FIGURE 11 The changes in bearer populations of 

natural mortality rate 
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FIGURE 12 The changes in bearer populations of β 
FIGURE 13 The changes in bearer populations leave 

the dangerous class 

  

When the continuous treatment is given the impact of HBV infection decreased compared with dangerous class.  

This can be shown in figures 12, 13 and 14.  This process is continued till the patient will be reacquired. The 

figures 15, 16 and 17 are shown the reacquire population is increased when the continuous treatment is given. 

After recovering, some patients are advised to take antibiotic.  Because of that protection after HBV reacquire 

keep up the lifetime of the population, though the protection of vaccination may vanish over time.  

FIGURE 14 The changes in reacquire populations of 

natural mortality rate 

FIGURE 15 The changes in reacquire populations 

of transmission coefficient 

 
 

FIGURE 16 The changes in reacquire populations of 

leaving dangerous class 

FIGURE 17 The changes in antibiotic populations 

of natural mortality rate 
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FIGURE 18 The changes in antibiotic populations of 

births with successful vaccination 

FIGURE 19 The changes in antibiotic populations 

of birth rate. 

 
 

 

VI. Conclusion 

The transmission dynamicsmathematical model of HBV is individual from the macroscopic observation to 

put on the spread of hepatitis B in the population.  Age-factor is the greatest significant characteristics in the 

transmission of HBV.  From this mathematical model it is redirected the spread of HBV and its consequences 

which control the transmission of HBV.  The numerical simulation provides numerical understanding of the 

transmission of HBV that results and makes thebesttreatment for individual patients.The numerical simulations 

obtained up to six order approximations with the help of Matlab software. We concluded that our work take 

minimum number of days to cure HBV.  This research paper can be framework for the young researchers to do a 

further research. 
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